博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
HTTP API 自动化测试从手工测试到平台的演变
阅读量:6233 次
发布时间:2019-06-22

本文共 8091 字,大约阅读时间需要 26 分钟。

不管是 Web 系统,还是移动 APP,前后端逻辑的分离设计已经是常态化,相互之间通过 API 调用进行数据交互。在基于 API 约定的开发模式下,如何加速请求 / 响应的 API 测试,让研发人员及早参与到调试中来呢?既然 API 是基于约定开发,为何不按照这个规范编写测试用例,直接进入待测试状态,使用自动化的方式来推进研发过程的质量改进呢?遵循:测试 -> 重构 -> 测试 -> 重构,这样的闭环,过程产出的质量会更加可控,在重构的同时进行快速的功能回归验证,大大提高效率。下面主要讲解基于 HTTP 协议的 API 测试,从手工测试到平台的演变过程。

  
  手工测试带来的困惑
  
  测试团队采用《敏捷脑图用例实践之路》的方式编写测试用例:
  
  图 -1- 分计费单元查询带宽
  
  图 -1- 分计费单元查询带宽
  
  优点:
  
  要点清晰简洁展现
  
  所有测试故事点经过用例评审,产生质量高,研发参与感强;
  
  版本同步保持一份
  
  API 测试脑图带来的问题:
  
  脑图用例对测试人员的素质要求相当高
  
  完善的脑图用例编写,需要有资深的测试人员,对业务精通、对测试技能精通,很强的思维能力;如果研发人员仅仅参考这个脑图用例进行测试,往往很多时候需要花费大量的沟通时间,其中有很多测试 API 的过程、措施,在脑图里面没有具体体现,造成一些信息丢失。
  
  重复执行不变的是规则,变的只是参数,要消灭重复部分
  
  还可以深度优化脑图用例,API 接口规范,再怎么天马行空,也得有个度,应当把重复思考的部分交给工具去做,需要发挥创造力、值得关注部分,交给人工完成;按照这个测试流程,,测试人员编写完用例,去验证 API 接口,如果失败了,打回给研发人员重新修改,但是下一次研发人员提交测试,测试人员又得重新验证一遍,这一遍中实际没有多少有价值的思考,是重复工作,要去挖掘测试价值。另外,如果测试人员请假了,那是不是测试就需要延期了呢?消除等待、消除单点作业,改变是唯一出路,尝试过如下方式:
  
  图 -2-Chrome DHC 组件
  
  图 -2-Chrome DHC 组件
  
  组员通过使用 Chrome DHC(是一款使用 chrome 模拟 REST 客户端向服务器发送测试数据的谷歌浏览器插件),进行 API 自动化测试,用例文件保存到本地并且同步到 svn,简单粗暴解决重复请求问题,注意强调的是解决重复请求,并没有包括参数和结果的自动化验证的过程,还是需要人工参与,至少前进了一步,当然我们也解决了单点问题,其他组员可以更新用例本地运行,还差参数校验,数据校验等等一堆关键业务点要用自动化去突破。
  
  俗话说:术业有专攻,DHC 只是玩玩而已,并不擅长做那么多活,也做不好,更期望的是平台化。
  
  平台雏形:没有经验,多么痛的领悟
  
  经历了手工测试的繁琐操作,丢弃了简单的 DHC,决定另寻新路,API 测试最简单的场景请求参数组合产生各类别的测试用例。思路很简单,做一个 WEB 平台,登记 API 接口,填写请求参数,对响应结果进行校验,初期进行了技术选型,使用 Django 做 Python Web 开发,后台脚本执行使用开源框架 RobotFramework,RF 优点如下:
  
  是一个通用的关键词驱动自动测试框架;
  
  易于使用的表格数据展现形式,采用关键字驱动的测试方法,使用在测试库中实现的关键词来在测试中运行程序。
  
  是灵活和可扩展的,适合用于测试用户接口;
  
  在这个平台中,RobotFramework 主要用于后台执行 Robot 关键字脚本,而关键字脚本,是平台通过读取 YAML 文件生成,该文件是通过笛卡尔乘积产生的用例,工作原理如图所示:
  
  图 -3- 工作原理
  
  图 -3- 工作原理
  
  那话说回来,YAML 干什么呢?为什么不是 XML 呢?
  
  YAML 的可读性好
  
  YAML 和脚本语言的交互性好
  
  YAML 使用实现语言的数据类型
  
  YAML 有一个一致的信息模型
  
  YAML 易于实现
  
  听起来 YAML 试图用一种比 XML 更敏捷的方式,来完成 XML 所完成的任务。下面通过一段实际例子说明配置生成的 YAML 代码段:
  
  主接口配置界面:
  
  图 -4- 接口配置页面
  
  图 -4- 接口配置页面
  
  设置 API 参数:
  
  图 -5- 设置 API 参数
  
  图 -5- 设置 API 参数
  
  配置文件 byChannelsDaily.yaml(列举一个参数示例):
  
  - byChannelsDaily: # 接口名称
  
  method: get # 与服务器交互的方法
  
  format: json #API 数据格式
  
  url: /reportdata/flux/byChannelsDaily #API 的 URL,与奇台配置文件里面的 host 变量组成整个 URL 的前半部分。
  
  url_path:
  
  url_params: #URL 参数部分,固定写法。
  
  username: #API 的参数名。
  
  required: true # 该参数是否必须(true/false)。
  
  value: chinacache # 该参数的值。如此值是从另一个接口获取的,可在 from_api 设置,此处可不填。如果值是 Boolean,必须加双引号。
  
  type: string # 该参数值的类型。
  
  len: 10 # 该参数值的长度。
  
  max: -100 # 该参数值的最大值。-100 相当于忽略此参数
  
  min: -100 # 该参数值的最小值。-100 相当于忽略此参数
  
  from_api: # 如参数的值是从另一个接口、global.yaml 中获取的,请设置 from_api,如 global
  
  jsonpath: # 可通过 jsonpath 来指定取值范围,如 $.version[2:4]
  
  range:
  
  response: # 期望结果
  
  verification:
  
  success: [] #success 是一个 list, 它的元素也是 list,success[0] = [ RF 关键字 ,验证字段,正则匹配]
  
  failure: []
  
  error_msg: [] # 错误信息集合</pre>
  
  测试报告:
  
  图 -6-rf 测试报告
  
  图 -6-rf 测试报告
  
  按照这个思路做下来,得到什么收益呢?
  
  自动化
  
  自动化
  
  说到这里,其实,真没有带来多少收益,思路对了,但是方向有偏差了,主要体现在:
  
  使用了笛卡尔乘积来生成不同参数的测试用例,发现一堆的测试用例生成文件是 M 的单位,而且也给测试服务器带来性能问题,数量 4980 个中占 95% 的用例都是没有实际意义的,对服务器频繁请求造成压力;
  
  图 -7- 庞大的测试用例文件
  
  图 -7- 庞大的测试用例文件
  
  通过 WEB 配置将 YAML 文件转为 robot 可以识别的,这种做法坑太深、维护难,参数越多, 文件越臃肿,可读性差;
  
  后来尝试将笛卡尔乘积换成全对偶组合算法,效果改进显著,无效用例数明显下降,有效用例数显著提升;
  
  败了,就是败了,没什么好找借口,关键问题是:
  
  有效的测试用例占比例很低,无效的占了大部分;
  
  没有化繁为简,前端隐藏了配置,复杂的配置还是需要在后端处理;
  
  没有实际测试参与动脑过程,测试人员不会穷举,会根据业务编写实际用例;
  
  平台易用性很重要:需要测试人员直接在上面编写,合理的逻辑步骤,有利于引导测试参与;
  
  重构:发现测试的价值
  
  回到起点,测试要解决什么问题,为什么要做 API 自动化测试平台?做这个平台,不是为了满足老板的提倡全民自动化的口号,也不是为了浮夸的 KPI,更不是宣传自动化可以解决一切问题,发现所有 bug。叔本华说过一句话:由于频繁地重复,许多起初在我们看来重要的事情逐渐变得毫无价值。如果 API 测试仅仅依靠纯手工的执行,很快将会面临瓶颈,因为每一个功能几乎都不能是第一次提交测试后就测试通过的,所以就需要反复 bug 修复、验证,以及回归的过程。另外,很多的 API 测试工作手工做起来非常的繁琐,甚至不便,比如针对接口协议的验证、针对返回数据格式的验证,这些都依赖于测试自动化的开展。因此,真正的目的是解放测试人员重复的手工生产力,加速回归测试效率,同时让研发人员在开发过程及早参与测试(自测、冒烟测试),驱动编码质量的提升。
  
  回顾以往,重新梳理头绪,更加清晰的展现:
  
  图 -8-HTTP API 自动化测试图解
  
  图 -8-HTTP API 自动化测试图解
  
  HTTP API 传统手工测试
  
  重复请求参数基础校验、正确参数查询返回数据校验,测试工程师没有新的创造价值,不断重复工作,甚至可能压缩其中的测试环节,勉强交付;
  
  HTTP API 自动化测试
  
  重复步骤(请求接口是否有效、参数校验可以作为冒烟测试,研发参与自测)用自动化解决,关键业务步骤数据对比人工参与和 schema 自动化校验;
  
  如果对软件测试、接口测试、自动化测试、性能测试、LR脚本开发、面试经验交流。感兴趣可以175317069,群内会有不定期的发放免费的资料链接,这些资料都是从各个技术网站搜集、整理出来的,如果你有好的学习资料可以私聊发我,我会注明出处之后分享给大家。
  
  最大的收益,重复步骤自动化后,不管是研发人员自测,还是执行功能回归测试,成本可以很快收回(前提是你这个项目周期长,构建频繁;如果仅仅是跑几个月的项目,真没那个必要凑热闹去自动化,当然有平台的另当别论),测试的关注点会落实到更加关键的业务环节去;
  
  总体规划如下:
  
  [
  
  图 -9-HTTP API 重构规划
  
  图 -9-HTTP API 重构规划
  
  技术选型
  
  由于原来的测试平台使用 Python 编写,为了保持风格一致,从界面录入到文件生成处理依然采用 Python、Django,去掉了全对偶组合算法,改为根据测试人员思维去产生用例;去掉了后台 RobotFramework 框架,采用 Python 的 HTTP 类库封装请求。
  
  HTTP API 项目管理 Web 前台
  
  使用 Python+Django+MySQL 进行开发,分为项目首页、项目配置、API 配置、全局配置四大部分
  
  图 -10- 管理 Web
  
  图 -10- 管理 Web
  
  项目首页
  
  介绍:列出 API 规范、API 测试用例、定时任务数量,以及某段时间内的测试结果趋势图形。
  
  图 -11- 项目首页
  
  图 -11- 项目首页
  
  项目配置
  
  重点介绍:全局变量、常用方法、验证器。
  
  全局变量
  
  设计思路:在 API 测试过程中,可以切换生产、测试环境进行对比校验,如果写两套测试用例是冗余,全局变量功能,是一种在执行测试用例时动态改变用例属性的方法。
  
  作用范围:当前项目内
  
  使用方法:{变量名}
  
  能在以下测试用例属性中使用:URL、请求头、请求参数
  
  图 -12- 全局变量配置页
  
  图 -12- 全局变量配置页
  
  在 API 用例库的 URL 可以直接填写:{host}/reportdata/monitor/getChannelIDsByUserName;当运行测试用例的时候,可以选择不同的参数套件,后台代码执行会直接替换,这样子可以分别快速验证生产环境和测试环境的 API 接口执行结果的差异。
  
  图 -13- 用例执行页
  
  图 -13- 用例执行页
  
  常用方法
  
  图 -14- 常用方法列表页
  
  图 -14- 常用方法列表页
  
  √ 设计思路:常用方法是一个 Python 函数,对入参进行处理并且返回结果,例如:
  
  gen_md5 作用是生成 MD5,对应代码直接填写:
  
  import hashlib
  
  def gen_md5(raw_str):
  
  m = hashlib.md5()
  
  m.update(raw_str)
  
  md5_str = m.hexdigest()
  
  return md5_str
  
  √ 应用场景:
  
  在 API 请求中,有些参数例如 pass 需要加密处理,可以通过引入 [常用方法] 来解决。
  
  在参数 pass 的值中直接填写:
  
  {
{get_apipwd("{123456}","ChinaCache")}}</pre>
  
  图 -15- 接口配置页
  
  图 -15- 接口配置页
  
  验证器
  
  √ 设计思路
  
  验证器是一个 Python 函数,如果函数返回 True,则测试通过;返回 False,则测试失败。平台默认提供一个默认验证器。
  
  默认验证器是验证期望结果与实际结果(response body)是否完全一致。如果结果不一致则判断为失败,默认验证器只适用于静态的响应结果对比。
  
  自义定验证器,如果默认验证器不能满足某些特殊的测试需求,用户可以在“项目配置 - 验证器”中添加自定义的验证器。
  
  √ 应用场景:在 API 测试的返回结果中,可以添加自定义验证器对数据进行校验,判断测试是否通过。
  
  图 -17- 测试用例验证展示页
  
  图 -17- 测试用例验证展示页
  
  API 配置
  
  重点介绍:通用响应配置、API 依赖库、API 用例库、定时任务、测试报告
  
  通用响应配置
  
  图 -18- 通用响应配置列表页
  
  图 -18- 通用响应配置列表页
  
  √ 设计思路
  
  在合理的 API 设计中,存在通用的错误响应码,[用户名错误,返回期望响应内容],如果所有 API 的响应结果中都需要重复写是相当繁琐的,作为共同配置调用即可。
  
  √ 应用场景
  
  查询接口遇到用户名密码为空,可以自定义写返回内容,以及选择 [通用响应配置] 下的相关错误类型,例如:用户名密码为空 (计费单元),自动填充期望的返回值:
  
  <BillingIDs>
  
  <Result>fail<www.michenggw.com /Result>
  
  <DetailInfo>invalid userName or password</DetailInfo>
  
  </BillingIDs>
  
  图 -19- 期望返回值校验页
  
  图 -19- 期望返回值校验页
  
  API 依赖库
  
  √ 设计思路 & 应用场景
  
  API-A 的参数 r_id 依赖与 API-B 返回结果的某个参数(多个参数同样道理),这里登记 API-B,并且提取返回参数。除了特有的变量提取器,基本信息与请求,与后面提到的 API 接口一致的
  
  填写方式 :
  
  图 -20- 变量提取器展示页
  
  图 -20- 变量提取器展示页
  
  该接口返回数据如下;
  
  {
  
  "r_id": "567bbc3f2b8a683f7e2e9436"
  
  }
  
  通过 [变量提取器],可以获取 r_id 的值,以供依赖 API-A 作为参数使用。
  
  图 -21- 用例中参数包含 r_id 变量展示页
  
  图 -21- 用例中参数包含 r_id 变量展示页
  
  其中请求参数的获取如下:
  
  图 -22- 请求参数变量提取设置
  
  图 -22- 请求参数变量提取设置
  
  测试结果:
  
  1- 显示依赖接口;2- 显示为需要测试的接口,依赖接口返回的 r_id 会传入作为测试接口的参数;
  
  图 -23- 测试结果中展示运行时变量提取结果
  
  图 -23- 测试结果中展示运行时变量提取结果
  
  API 用例库
  
  图 -24- 用例库设计脑图
  
  图 -24- 用例库设计脑图
  
  如果对软件测试、接口测试、自动化测试、性能测试、LR脚本开发、面试经验交流。感兴趣可以175317069,群内会有不定期的发放免费的资料链接,这些资料都是从各个技术网站搜集、整理出来的,如果你有好的学习资料可以私聊发我,我会注明出处之后分享给大家。
  
  √ 设计思路
  
  通过自助配置:请求头、请求参数,响应头、响应结果校验,来聚合测试人员日常思考产生的测试用例。
  
  √ 应用场景
  
  支持 HTTP1.1 协议的 7 种请求方法:GET、POST、HEAD、OPTIONS、PUT、DELETE 和 TARCE。最常用的方法是 GET 和 POST:
  
  支持 query(问号后)带参数、www.yigouyule2.cn path 的 GET|POST 请求
  
  Query:http://192.168.1.11/internal/refresh?username=ChinaCache&password=123456
  
  Path:http://192.168.1.11/internal/refresh/username/password
  
  POST 请求支持 application/json、text/xml
  
  示例如下:
  
  请求头设置:Content- www.mhylpt.com/ Type:application/json
  
  请求体设置:保存为 JSON 格式
  
  {
  
  "username": www.meiwanyule.cn"ChinaCache",
  
  "password": "123456",
  
  "task": {
  
  "dirs": [ 如果对软件测试、接口测试、自动化测试、性能测试、LR脚本开发、
  
  "" 面试经验交流。感兴趣可以175317069,群内会有不定期的发放免费
  
  ], 的资料链接,这些资料都是从各个技术网站搜集、整理出来的,如果
  
  "callback": { 你有好的学习资料可以私聊发我,我会注明出处之后分享给大家。
  
  "url": "",
  
  "email": []
  
  },
  
  "urls": [
  
  "http://www.chinacache.com/news/test.html"
  
  ]
  
  }
  
  }

转载地址:http://ctqna.baihongyu.com/

你可能感兴趣的文章
wine 运行Call of Duty Modern Warfare 2以及starcraft2方法
查看>>
找出表的记录数
查看>>
实现WCF和Unity 的集成
查看>>
Java 和 C#在重写上的区别
查看>>
基础才是重中之重——对var的误会,对不起,我愿望(冤枉)你了
查看>>
集合类型的装配
查看>>
【Linux开发技术之工具使用】配置VIM下编程和代码阅读环境
查看>>
【读书笔记】测试驱动开发(中文版)
查看>>
ExtAspNet v3.0.1
查看>>
javascript 构造函数和方法
查看>>
使用VB.net Express 2010开发AutoCAD.net插件调试时出现很多错误的解决办法
查看>>
.net服务使用笔记(原创)
查看>>
使用Tomcat配置域名
查看>>
[转]Oracle/Altibase数据库中Sequence的用法
查看>>
URAL 1009 K-based Numbers
查看>>
android 知识点汇总
查看>>
android之Notification通知
查看>>
C# 生成等比缩略图的类
查看>>
安利 : プログラミングで彼女をつくる 全攻略~
查看>>
1022. Digital Library (30)
查看>>